Journal of Lie Theory c ○?? Heldermann Verlag Berlin Leibniz algebras, Lie racks, and digroups
نویسنده
چکیده
The “coquecigrue” problem for Leibniz algebras is that of finding an appropriate generalization of Lie’s third theorem, that is, of finding a generalization of the notion of group such that Leibniz algebras are the corresponding tangent algebra structures. The difficulty is determining exactly what properties this generalization should have. Here we show that Lie racks, smooth left distributive structures, have Leibniz algebra structures on their tangent spaces at certain distinguished points. One way of producing racks is by conjugation in digroups, a generalization of group which is essentially due to Loday. Using semigroup theory, we show that every digroup is a product of a group and a trivial digroup. We partially solve the coquecigrue problem by showing that to each Leibniz algebra that splits over an ideal containing its ideal generated by squares, there exists a special type of Lie digroup with tangent algebra isomorphic to the given Leibniz algebra. The general coquecigrue problem remains open, but Lie racks seem to be a promising direction.
منابع مشابه
Leibniz Algebras, Lie Racks, and Digroups
The “coquecigrue” problem for Leibniz algebras is that of finding an appropriate generalization of Lie’s third theorem, that is, of finding a generalization of the notion of group such that Leibniz algebras are the corresponding tangent algebra structures. The difficulty is determining exactly what properties the generalization of group should have. Here we show that Lie racks, smooth left dist...
متن کاملFixed point approach to the Hyers-Ulam-Rassias approximation of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
متن کاملArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملLattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کامل